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On the correlation between hardness and yield strength
in multilayered elastic-plastic materials
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Nanoindentation has been increasingly utilized for
characterizing mechanical properties of small-scale
materials and structures. One notable example is multi-
layered metallic films [1-3]. Concerns have been raised
about what the indentation hardness of the composite
layers really represents [4]. This study is our first at-
tempt to quantify the indentation hardness of multilay-
ered materials and to correlate it to the overall yield
property of the entire structure. For simplicity attention
is limited to alternating layers of two metals of equal
thickness. Hypothetical elastic-plastic properties of the
constituent layers are used as input in the modeling. The
indentation displacements considered are sufficiently
deep so the effective hardness resulting from the com-
posite structure can be obtained. In particular, we intend
to find out if indentation hardness can provide an accu-
rate account of the overall composite flow stress.

The model system is a laminated structure consist-
ing of alternating layers of material A and material B of
equal thickness. Both A and B are taken to be isotropic
elastic-perfectly plastic. The Young’s moduli (E) and
Poisson’sratios (v) are E4 = 100 GPa, Eg = 200 GPa,
vqg = 0.3 and vg = 0.3. The yield strengths o, are set
to be 0, 4 =50 MPa and o, p = 150 MPa. Plastic
yielding follows the von Mises criterion. All interfaces
between adjacent layers are assumed to be perfectly
bonded. Note that, although the individual layer thick-
ness may be conceived to be in the sub-macroscopic
range, there is no intrinsic length scale involved in
the present continuum-based simulation. As a conse-
quence, there is no size-dependent effect caused by the
varying underlying deformation mechanisms found in
actual micro- and nano-layered metals.

Finite element analyses of compressive loading are
first performed to obtain the overall yield strength of
the composite, as schematically shown in Figs. 1a and
b. Both the longitudinal and transverse loading con-
figurations are considered. In the pure elastic regime,
the effective moduli of the laminates thus obtained can
be approximated by the simple rule-of-mixtures solu-
tions applied to the isostrain condition for longitudinal
loading and the isostress condition for transverse load-
ing. Our main focus here, however, is on the overall
yield strength. The calculated composite response will
be the “true” effective properties of the entire multilayer
structure with all three-dimensional features accounted
for.
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The effective stress-strain response in the transverse
direction is then used as the input response of a homo-
geneous material to be subjected to indentation load-
ing. Since the homogeneous material used here actually
represents the multilayers (with the composite material
properties built in), the modeled indentation hardness
will be the “true” value one would seek when employing
the indentation technique on the multilayer structure.
(Howeyver, we illustrate in this work that, when inden-
tation is applied to a material with the layered structure
explicitly accounted for, there is a significant deviation
of the hardness values from the “true” values.)

Simulations of indentation are based on the axisym-
metric model featuring a rigid conical indenter. Fig. 1c
shows a schematic of the model. The semi-angle of the
conical indenter is 70.3°, resulting in a same projected
area as the Berkovich indenter [5—8]. There are a total
of 60 alternating layers of material A and material B,
all of equal thickness. In Fig. 1c, the topmost layer to be
in direct contact with the indenter is shown to be mate-
rial A. In our analysis another model, with the topmost
layer being material B, is also considered. These two
multilayer arrangements are henceforth referred to as
“AB stack” and “BA stack,” respectively. (In the case
of indenting a homogeneous material having the built-
in composite properties, as described in the previous
paragraph, the entire specimen is simply replaced by a
homogeneous material with the specified elastic-plastic
input response.) The left-hand boundary is the symme-
try axis. The total thickness of the specimen is 60¢,
where ¢ is the thickness of the individual layer. The lat-
eral span (radius) of the model is 100z. The left-hand
boundary is allowed to move only in the vertical di-
rection. The bottom boundary is allowed to move only
in the horizontal direction. The right-hand boundary is
not constrained. The top boundary, when not in contact
with the indenter, is also free to move. The coefficient
of friction between the top layer and the rigid indenter
is taken to be 0.1 (which is a typical value for the dia-
mond/metal contact pair [9, 10]). The modeled hardness
is defined to be the indentation load divided by the cur-
rent projected contact area. In calculating the contact
area, the last nodal point on the top surface in contact
with the indenter is identified so the effect of pileup is
readily taken into consideration. The finite element pro-
gram ABAQUS (Version 6.4, Abaqus Inc., Pawtucket,
RI) is employed in all calculations. A total of 65520
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Figure 1 Schematics showing (a) longitudinal and (b) transverse loading
configurations, for modeling the overall compressive response of the
multilayered composite. (c) The indentation model, where the specimen
and indenter both possess axial symmetry about the left boundary. The
rigid indenter has a semi-angle of 70.3°.

four-noded rectangular elements are used in the model,
with a finer mesh size near the upper-left corner. The
smallest element has dimensions of 0.1z x 0.1¢. The
mesh convergence is verified by utilizing a separate
coarser-mesh model, and the error in hardness is found
to be within 1.1% [11].

Fig. 2a shows the modeled overall compressive
stress-strain curves. Results from the longitudinal and
transverse loading configurations, as well as those of the
homogeneous materials A and B used as the modeling
input, are all included. It can be seen that, in both load-
ing configurations, the multilayered composite shows
a bilinear response before fully yielded. The first lin-
ear segment corresponds to a true elastic state. When
the von Mises effective stress in layer A reaches oy 4,
plastic yielding in A commences while B is still in
the elastic state. This leads to the second linear seg-
ment. When both layers become plastic, a constant
flow stress ensues. This flow stress is defined to be
the “composite yield strength.” The composite yield
strength (100 MPa) is observed to be the average of o, 4
(50 MPa) and o, (150 MPa) for the present multilayer
model with 50-50% volume fractions. Although trans-
verse and longitudinal loadings both result in the same
composite yield strength along the compressive axis,
the individual stress components in the layers are differ-
ent. Upon full yielding the algebraic values of the stress
components in each layer in the transverse case (where
the macroscopic compressive axis is in the y direction)
are: U;; = —50 MPa, va = —100 MPa, o*z“; = -50
MPa, 05 =50 MPa, 0> = —100 MPa and 62 = 50
MPa. In the longitudinal case (where the macroscopic
compressive axis is in the x direction), cr)ér = —50MPa,

B

0., = —150 MPa, and all other components are either

zero or with very small magnitudes.
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Figure 2 Modeled overall compressive stress-strain curves of the mul-
tilayers. Also included for reference are the input stress-strain responses
for the homogeneous A and B materials. (b) Modeled hardness as a func-
tion of indentation depth (normalized with the initial layer thickness, ).

Attention is now turned to indentation modeling.
First, the modeled overall compressive stress-strain
curve (Fig. 2a) is used as the input response for a
homogenous material, termed “homogenized multilay-
ers” in subsequent discussions. The transverse response
is chosen for this purpose, although the longitudinal re-
sponse yields essentially the same indentation result
since the indentation hardness under consideration is
dominated by the large-deformation plastic behavior of
the composite. The elastic response plays essentially no
role in affecting the indentation behavior in the present
analysis [11]. Fig. 2b shows the modeled hardness as
a function of indentation depth for the homogeneous
A and B materials, the homogenized multilayers, and
the composite structures with explicit A/B layers. It is
seen that the hardness values in all homogeneous and
homogenized cases are generally independent of the in-
dentation depth. Itis also seen that the model of homog-
enized multilayers results in hardness values which are
almost exactly the averages of pure A and B materials.
One can calculate the ratio of hardness/yield strength
for the homogeneous materials and homogenized mul-
tilayers shown in Fig. 2b. Here, if the hardness values
are divided by the respective yield strengths (50 MPa
for “homogenous A,” 150 MPa for “homogenous B,”
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Figure 3 Contours of Mises effective stress (in MPa) in (a) “AB stack” and (b) “BA stack” models, when the indentation depth is at 6¢. Only two
levels of contour shades are visible because the stresses in the layers have reached the saturation values (50 MPa in A and 150 MPa in B).

and 100 MPa for “homogenized multilayers”), the ratio
is approximately 2.93 for all three models.

As for the composite structures in Fig. 2b, it is evi-
dent that the “AB stack” and “BA stack” models do not
generate the same hardness results as in the homoge-
nized multilayers. At shallow depths, the hardness is
dominated by the top layer material so “BA stack” and
“AB stack” result in very high and low hardness val-
ues, respectively. As the indentation depth increases
the difference from the two arrangements is reduced
and the two curves tend to merge. Ideally there will
be a single hardness value at very large indentation
depths, although in Fig. 2b the two curves are still some-
what apart at a depth corresponding to eight initial layer
thicknesses (8¢). Nevertheless, it is apparent that both
composite models underestimate the overall strength of
the structure (recall that the “homogenized multilayers”
represents the “true” composite response). For instance,
taking the average of the hardnesses of “BA stack™ and
“AB stack” at the maximum depth in Fig. 2b leads to a
value of 251 MPa. Dividing this hardness value by the

ratio 2.93 identified above, one obtains the indentation-
derived composite yield strength of 85.7 MPa, which is
about 14% below the “true” composite yield strength of
100 MPa. Therefore, applying indentation on the lay-
ered composite clearly leads to an underestimation of
their overall strength.

Figs. 3a and b show the contours of Mises effective
stress in “AB stack” and “BA stack,” respectively, when
the indentation depth is equal to 6¢. For clarity, only the
portion close to the indentation is shown. Since no strain
hardening is assumed in the constitutive response of A
and B, the Mises effective stress reaches a saturation
value (50 MPa in A and 150 MPa in B) once plasticity
sets in. Therefore, only two levels of contour shades can
be seen. Pileups at the edge of the indentation are evi-
dent, with the “AB stack” being more distinct because
the top layer (A) is the softer of the two. Examining the
contours of equivalent plastic strain (not shown here)
reveals that very strong plasticity appears underneath
the indentation near the interfaces between A and B
layers. This implies that severe distortion of material
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elements can occur locally if the penetration depth is
very large, which could induce numerical problems
that prevent the simulations from eventually reaching a
converged hardness value for the “AB stack” and “BA
stack” models. In an actual multilayered thin-film struc-
ture, strong shearing along the interfaces in the region
underneath the indentation implies that interfacial slid-
ing and even damage between the layers may occur.
The effects of interface features will be left as future
work.

One factor that can contribute to the underestima-
tion of composite yield strength by indentation is the
localized nature of indentation loading. When overall
deformation (such as compressive or tensile testing) is
considered, the constituent layers respond to the ap-
plied loading as well as the uniform constraint in their
respective ways, so the deformation field in each layer
is uniform. In the highly localized indentation loading,
such type of “ordered” behavior no longer exists. If the
several softer layers close to the indent accommodate
a greater part of the geometric constraint through easy
plastic flow, an underestimation of the uniform com-
posite strength can indeed occur. It should be noted
that the present study concentrates only on alternat-
ing layers of elastic-perfectly plastic metallic films. If
one or both materials strain-harden upon yielding, the
indentation response can be significantly influenced
depending on the actual material parameters. Never-
theless, the present study serves to provide a baseline
understanding of the relationship between indentation
hardness and overall yield strength for multilayered
elastic-plastic materials. This information is essential
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for further explorations involving more complex mate-
rial, geometric, and interface features.
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